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Hoffman, Kouri, and collaborators have calculated nonrelativistic quantum
scattering amplitudes by numerically evaluating Feynman path integrals. They
observed that the errors introduced by their numerical scheme were uniform in coor-
dinate space, implying that their scheme accurately reproduces both the shape and
the phase of functions. Furthermore, they observed that the size and the uniform
nature of the errors were preserved when the functions were allowed to evolve in
time under the action of the kinetic energy operator. In this paper it is established
that these observed properties of the errors are not numerical artifacts but follow
from analytical properties of a general class of approximations that include those
of Hoffman, Kouri, and collaborators as a special case. � 1999 Academic Press

I. INTRODUCTION

In their very interesting program to calculate nonrelativistic quantum
scattering amplitudes by numerically evaluating Feynman path integrals
Hoffman, Kouri, and their collaborators [1�14] have introduced certain
approximations to the identity operator. They observed numerically that
the error introduced by their approximations was uniformly small in the
position coordinate. Moreover, the size and the uniformity of the error was
unchanged under propagation in time by the kinetic energy operator. That
the errors are uniform is particularly intriguing because it implies that the
approximations preserve both the shapes and the phases of functions
relatively well. It is the purpose of this paper to prove that the observed
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uniformity is not a numerical artifact but is a consequence of the analytical
properties of the approximations,

Nonrelativistic Feynman path integrals [15] can be considered a conse-
quence of the Trotter product formula [16, Section X.11]. Solutions of the
time-dependent Schro� dinger equation have the form

�t=e&iHt�0 , (1)

where �t # L2(R) for all real t, i=- &1, and H is a self-adjoint operator
of the form

H#K+V. (2)

The kinetic energy operator K is defined by

(Kf )(x)#&
1

2+
d 2f
dx2 (x), (3)

where the constant + represents a mass. The potential energy operator V
is defined by

(Vf )(x)#v(x) f (x), (4)

where (for simplicity) v: R � R, v # L�(R) & L2(R). The Trotter product
formula [17, Theorem VIII.31] implies that Eq. (5) can be rewritten,

�t= lim
N � �

UN
t�N �0 , (5)

where N assumes integer values. The unitary operator U{ is defined by

U{ #e&iV{e&iK{ (6)

and has the kernel [16, Section IX.7]

U{(x, y)=e&iv(x) { {\ +
2?i{+

1�2

ei+ |x& y|2�(2{)= . (7)

Writing out Eq. (5) in terms of the kernel functions given in Eq. (7) yields

�r(x)= lim
N � � |

R

dxN } } } |
R

dx1 Ut�N(x, xN) Ut�N(xN , xN&1) } } }

_Ut�N(x2 , x1) �0(x1), (8)

the equation from which derivations of the Feynman path integral for-
malism commonly start.
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Numerical calculations based on Eq. (8) involve choosing an initial func-
tion �0 , fixing N, restricting the integrations to some finite interval, and
using some quadrature rule to evaluate the resulting x-integrations. For
example, for the composite trapezoid rule, one would have the approximation

�t(x)r2N :
M

r1, r2 , ..., rN=&M

Ut�N(x, rN2) Ut�N(rN2, rN&1 2) } } }

_Ut�N(r22, r1 2) �0(r12). (9)

The values of N, M, and 2 would then be varied to obtain numerical
convergence.

The numerical method just described is not practical, however, and a
further approximation must be introduced. The problem is that the matrix
Ur$r #U{(r$2, r2) is dense, as is apparent from the fact that all the matrix
elements have the same norm ( |Ur$r |=(+�2?{)1�2). The key idea of
Hoffman et al. [1�14] was to replace U{ by U{Dn , where n is a positive
integer and the operators Dn are bounded and tend (in some sense) to the
identity as n � �. They constructed the operators Dn so that the kernel
matrix (U{ Dn)(r$2, r2) is strongly banded. Numerical calculations employ-
ing the operators Dn (which Hoffman et al. called distributed approximation
functionals) proved to be efficient, accurate, and robust [5, 9, 12].

In their numerical studies Hoffman et al. noticed [18] that for every
function f used the function (e&iK{Dn f )(x) approximated (e&iK{f )(x) to
arbitrary accuracy uniformly in x and { for n sufficiently large. It is the pur-
pose of this paper to prove that this observed uniformity is a consequence
of the analytical properties of the approximations, and to do this for a class
of approximations to the identity operator that includes those of Hoffman
et al. as a special case.

A general class of sequences of functions, called sequences of unity
approximations, is defined and studied in Section II. In Section III both
continuous and semi-discrete approximations to the identity operator are
defined and proved to be bounded linear transformations on certain
Banach spaces. The semi-discrete approximations are essentially discrete
convolutions with more general kernels than those of previous theories that
center on such convolutions (e.g., moving least squares [19, 20] and shift-
invariant spaces [21]). Theorems are then proved in Section IV that
give the precise conditions under which the errors introduced by the
approximations are uniform in coordinate space. The Schro� dinger time
evolution of the continuous and semi-discrete approximations is studied in
Section V, and it is proved that the errors resulting from the approxima-
tions are not only uniform in coordinate space but remain so when
propagated in time by the kinetic energy operator. While the results for the
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continuous approximations to the identity are not surprising and may well
be known in other contexts, the results for the semi-discrete approxima-
tions, which are particularly relevant to numerical applications, are new.

II. SEQUENCES OF UNITY APPROXIMATIONS

In this section notation is established and fundamental definitions are
given. In particular, a definition is given of the general class of sequences
of functions (called sequences of unity approximations) used to construct
the approximations to the identity operator that are the main subject of
this paper. The important properties of these sequences are also established
in this section.

Throughout this paper certain standard notation will be used. R will
denote the set of all real numbers, and C will denote the set of all complex
numbers. S(R) will denote the functions of rapid decrease, that is, the class
of infinitely differentiable functions of a real variable satisfying
lim |x| � � |xlf (m)(x)|=0, for all l, m�0. Lp(R), 1�p<�, will denote the
space of measurable complex-valued functions of a real variable whose p th
power is Lebesgue integrable, and L�(R) will denote the space of essen-
tially bounded complex-valued functions of a real variable. Finally,
C�(R)/L�(R) will denote the set of all continuous functions of a real
variable that vanish at infinity.

The other needed spaces are specified in the following two definitions.

Definition 1. For each integer M�0, a measurable function f� : R � C
will be said to belong to the space SM if

& f� &SM
#|

R

dk wM(k) | f� (k)|<�, (10)

where

wM(k)# :
M

m=0

|k| m. (11)

Note that the space SM is a complete normed linear vector space with
norm & }&SM

defined by Eqs. (10) and (11). Note also that SM �L1(R).

Definition 2. For each integer M�0, a function f: R � C will be said
to belong to the space FM if it is the Fourier transform F[ f� ] of f� # SM ,
where the Fourier transform F is defined by

f (x)=(F[ f� ])(x)#(2?)&1�2 |
R

dk eikxf� (k). (12)
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The continuity properties of functions in FM are important for this
paper and are established by the following well-known lemma (cf. [16,
Theorem IX.7; 25, Theorem 3].

Lemma 1. Let f # FM be the Fourier transform of f� # SM . Then, the
Fourier transforms

f (m)(x)=F[(ik)m f� ]

#(2?)&1�2 |
R

dk eikx(ik)m f� (k), m=0, 1, ..., M, (13)

exist, belong to C�(R) & FM&m /L�(R) & FM&m , and satisfy & f (m)&��
(2?)&1�2 & f� &SM

. Moreover, f =f (0) and f (m)=d mf�dxm.

Note that S(R)/SM and S(R)/FM . Note also that while FM /
C�(R)/L�(R), the set FM is not a subset of Lp(R) nor is Lp(R) a subset
of FM for any p satisfying 1�p<�. However, the following lemma holds.

Lemma 2. For each integer M�0, FM & Lp(R) is dense in Lp(R) for
every p satisfying 1�p<�.

Proof. Let C �
0 (R) denote the infinitely differentiable functions of com-

pact support. Since for every p, 1�p<�, C �
0 (R)/S(R)/FM & Lp(R),

and C �
0 (R) is dense in Lp(R) ([23], p. 3), it follows that FM & Lp(R) is

dense in Lp(R). K

This lemma is important for applications to nonrelativistic quantum
mechanics for which the natural function space is L2(R). It implies that all
wave functions can be approximated by functions in FM , M�0, to
arbitrary accuracy in L2 norm.

The general class of sequences that specify the approximations that are
the main subject of this paper are now defined.

Definition 3. A sequence [/̂n]�
n=1 of measurable functions /̂n : R � C

will be called a sequence of unity approximations and /̂n will be called a
unity approximation if the following three properties are satisfied:

(/1) For each n=1, 2, ..., /n #(2?)&1�2 F[/̂n] # L1(R) & F1 ;

(/2) &/̂n&��C for some positive constant C independent of n;

(/3) limn � � /̂n(k)=1, for almost all k # R.

Note that if /̂n # S(R) for each n, (/1) is automatically satisfied. Conse-
quently, if (/2) and (/3) are also satisfied, then [/̂n]�

n=1 is a sequence of
unity approximations. This is the case, in particular, for the sequence of
functions used in the work of Hoffman, Kouri, and their collaborators
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[1�14] that stimulated this paper. Although they studied several sequences
based on several different types of orthogonal polynomials, the functions
they studied in greatest detail are based on Hermite polynomials

/n(x)=(2?_2)&1�2 e&x2�(2_2) :
n

&=0

(&1)&

22&& !
H2&(x�(21�2_)) (14)

and

/̂n(k)=e(&_k)2�2 :
n

&=0

[(_k)2�2]&

&!
. (15)

Here _ is a positive real constant and H2& is the Hermite polynomial of
degree 2&. It is evident that /̂n # S(R) for each fixed value of n. Moreover,
the sum in Eq. (15) converges monotonically from below to exp[(_k)2�2]
as n � �, for every finite k. It immediately follows that (/2) and (/3) are
satisfied with C=1 and, consequently, that the functions in Eqs. (14) and
(15) form a sequence of unity approximations.

The following lemma establishes several important properties of unity
approximations.

Lemma 3. Let [/̂n] be a sequence of unity approximations. Then the
following hold:

(a) For each n=1, 2, ..., both /n and its derivative /$n belong to
C�(R)/L�(R) and are bounded in L� norm by (2?)&1 &/̂n&S1

,

(b) For each n=1, 2, ..., /̂n(k) has the representation

/̂n(k)=|
R

dx e&ikx/n(x), (16)

(c) For each n=1, 2, ..., both /̂n and /n belong to Lp(R) for all
1�p��,

(d) The sequence [/n] is a delta sequence, i.e.,

lim
n � � |

R

dy /n(x& y) ,( y)=,(x), (17)

for any , # S(R).

Proof. Let [/̂n] be a sequence of unity approximations.

(a) By (/1), /n=(2?)&1�2 F[/̂n] # F1 . Lemma 1 then implies that /n

and its derivative /$n=(2?)&1�2 F[ik/̂n] both belong to C�(R)/L�(R)
and are bounded in L� norm by (2?)&1 &/̂n &S1

.
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(b) By assumption (/1), part (a) of this proof, and the Fourier trans-
form theorem [24, Theorem 7.1], /̂n and (2?)1�2 /n are a Fourier transform
pair, and /̂n , the inverse Fourier transform of (2?)1�2 /n , is given by
Eq. (16).

(c) Since S1 /L1(R), (/1) and (/2) imply /̂n # L1(R) & L�(R). This
further implies that /̂n # Lp(R) for all 1�p�� since

&/̂n& p
p =|

R

dk |/̂n(k)| p&1 |/̂n(k)|�&/̂n& p&1
� &/̂n&1<�. (18)

By (/1) and part (a) of this proof, /n # L1(R) & L�(R). Therefore, Eq. (18)
is valid without the hats, and /n # Lp(R) for all 1�p��.

(d) The sequence [/n] is a delta sequence if /n # L loc
1 (R) and /n(x)

converges in the sense of distributions to the delta function $(x) [25,
Chapter 2]. By assumption (/1), /n is locally integrable on R. Let , # S(R),
and let ( f, ,) denote the action of the distribution f on the test function
,. Then

|(/n&$, ,) |=|(/̂n&1, ,� ) |�|
R

dk |/̂n(k)&1| |,� (k)|, (19)

where ,� is the Fourier transform of ,. The right-hand side of Eq. (19) con-
verges to zero as n � � by (/2) and (/3) and the Lebesgue dominated
convergence theorem. K

III. CONTINUOUS AND DISCRETE DAFS

In this section sequences of unity approximations are used to define two
sequences of operators which approximate the identity. The nomenclature
follows that of references [1�14].

The continuous approximations are defined by using the functions /̂n of
sequences of unity approximations as Fourier window functions.

Definition 4. Let [/̂n] be a sequence of unity approximations. The
operators Cn defined by

(Cn f )(x)#(F[/̂n f� ])(x)=(2?)&1�2 |
R

dk eikx/̂n(k) f� (k) (20)

will be called continuous distributed approximating functionals (continuous
DAFs).
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The domain and corresponding range of the continuous DAFs is estab-
lished by the following lemma which is doubtless well-known. Its proof will
be omitted.

Lemma 4. Let [/̂n] be a sequence of unity approximations, and let the
operators of the sequence [Cn] be the corresponding continuous DAFs. Let
M, M�0, and n, 1�n<�, be arbitrary fixed integers. Then Cn maps FM

into FM /L�(R), and for each f # FM

(Cn f )(x)=|
R

dy /n(x& y) f ( y), (21)

with /n=(2?)&1�2 F[/̂n].

Discrete versions of the continuous DAFs are now defined as follows.

Definition 5. Let [/̂n] be a sequence of unity approximations. Let
[ws , ts]S

s=1 be the positive weights and nodes for a quadrature rule for
integrals on the interval [&1, 1]. Let 2 be a positive real number. The
operators Dn defined by

(Dn f )(x)#(2?)&1�2 |
R

dk eikx/̂n(k)

_{ 2

2 - 2?
:
�

r=&�

:
S

s=1

ws e&ikxrs f (xrs)= , (22)

where

xrs=\r+
1
2+ 2+

2
2

ts , (23)

will be called discrete distributed approximating functionals (discrete DAFs).

Equation (22) is recognized as a composite quadrature approximation of
Eq. (20).

The following lemma provides a domain and range result for discrete
DAFs that is analogous to that of Lemma 4 for the continuous DAFs.

Lemma 5. Let [/̂n] be a sequence of unity approximations. Let
[ws , ts]S

s=1 be the positive weights and nodes for a quadrature rule for
integrals on the interval [&1, 1]. Let �S

s=1 ws=2, and let 2 be a positive
real number. Let the operators of the sequence [Dn]�

n=1 be the corresponding
discrete DAFs. Let n, 1�n<�, be an arbitrary fixed integer. Let f be a
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differentiable complex-valued function on R such that f, f $#df�dx # L1(R).
Then, Dn f # F0 /L�(R) and

(Dn f )(x)=
2
2

:
�

r=&�

:
S

s=1

ws /n(x&xrs) f (xrs), (24)

where /n=(2?)&1�2 F[/̂n].

Proof. A general consequence of standard numerical analysis [26,
p. 70] is that for any function .: R � C such that ., .$#d.�dx # L1(R),

|
1

&1
dt .(xr(t))& :

S

s=1

ws.(xrs)=|
1

&1
dt K0(t)

d
dt

.(xr(t)), (25)

where xr(t)=(r+1�2) 2+(2�2) t and xrs=xr(ts). The function K0(t) is the
Peano kernel

K0(t)#|
1

&1
du H(u&t)& :

S

s=1

wsH(ts&t), (26)

where H( } ) is the Heaviside function. Because |H(u&t)|�1, K0 #
L�([&1, 1]) and

} :
S

s=1

ws.(xrs) }�|
1

&1
dt[ |.(xr(t))|+(&K0&� 2�2) |.$(xr(t))|]. (27)

Transforming the integration variable from t to x=xr(t) yields

} :
S

s=1

ws.(xrs) }�2
2 |

(r+1) 2

r2
dx[ |.(x)|+(&K0&� 2�2) |.$(x)|], (28)

with the further consequence that

2
2

:
�

r=&� } :
S

s=1

ws.(xrs)}�&.&1+(&K0&� 2�2) &.$&1 . (29)

Applying this analysis to .(x)=e&ikxf (x) proves that the quantity in
braces in Eq. (22) is a continuous function of k that satisfies

} 2

2- 2?
:
�

r=&�

:
S

s=1

wse&ikxrs f (xrs) }
�(2?)&1�2 [& f &1+(&K0&� 2�2)( |k| & f &1+& f $&1)]. (30)
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The quantity in braces in Eq. (22) times /̂n consequently belongs to S0 and
Dn f # F0 /L�(R). Equation (28) implies that the order of integration and
infinite summation can be reversed in Eq. (22), yielding Eq. (24). K

Remark. The discrete DAF reminds one of other well developed
approximations, but the similarity is only superficial. It is true, for example,
that the continuous DAF specified by Eqs. (14) and (15) is a special case
of the moving least squares method [19, 20]. The discrete DAF is different,
on the other hand, from the discrete moving least squares method, which
does not, in general, have the form of a discrete convolution. The form of
the discrete DAF is also suggestive of approximations involving shift-
invariant space theory [21]. In shift-invariant space theory, however, there
is a scale parameter and a mesh size that are set equal. In discrete DAF
theory, on the other hand, the mesh size 2 is prominent but there is no
scaling parameter. In addition the Strang-Fix conditions, which are promi-
nent in both the moving least squares and the sift-invariant space theories,
are absent in discrete DAF theory. The discrete DAFs seem to be new,
with more general kernels than those allowed by these other theories.

It is important for applications that the approximations in Eq. (24) be
uniform in x, and we address this question in the next section.

IV. UNIFORM APPROXIMATION THEOREMS

The convergence in Eq. (17) of Lemma 3 is in the sense of distributions
and is not strong enough for applications. The following theorem estab-
lishes that any function in FM may be approximated uniformly in x by
a continuous DAF. The results contained in the theorem are surely
well-known, and we omit the proof.

Theorem 1. Let [/̂n] be a sequence of unity approximations, and let
the operators of the sequence [Cn] be the corresponding continuous DAFs.
Let M, M�0, be an arbitrary fixed integer, and let f # FM . Let f (0)

denote f, f (m) denote d mf�dxm for 1�m�M, and let (Cn f ) (m) denote the
corresponding derivatives of Cn f. Then, f (m)&(Cn f ) (m) # FM /L�(R), with

& f (m)&(Cn f ) (m)&� �(2?)&1�2 &(ik)m (1&/̂n) f� &1

�(2?)&1�2(1+C) & f� &SM
. (31)

Moreover,

lim
n � �

&(ik)m (1&/̂n) f� &1=0. (32)
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The next theorem establishes that any function in a certain subset of
FM+1 may be approximated uniformly in x by a discrete DAF.

Theorem 2. Let [/̂n] be a sequence of unity approximations. Let
[ws , ts]S

s=1 be the positive weights and nodes for a quadrature rule for
integrals on the interval [&1, 1] that is exact for polynomials of degree
through P, P�0. Let 2 be a positive real number. Let the operators of the
sequence [Dn]�

n=1 be the corresponding discrete DAFs. Let M, M�0, be an
arbitrary fixed integer, and let /̂n # SM+P+1 . Let f ( p) # L1(R), 0�p�P+1.
Then, Cn f &Dn f # FM and

&(Cn f ) (m)&(Dn f ) (m)&�

�(2?)&1 2P+1 &KP&� &/̂n&SM+P+1
max

p=0, ..., P+1
& f ( p)&1 , (33)

0�m�M, where

KP(t)#
1

P ! {|
1

&1
du H(u&t)(u&t)P& :

S

s=1

wsH(ts&t)(ts&t)P= , (34)

with H the Heaviside function.

Proof. By Eqs. (20) and (22), (Cn f ) (m)&(Dn f ) (m) can be written in the
form

([Cn&Dn] f ) (m)(x)=|
R

dk eikx(ik)m /̂n(k) J� (k), (35)

where

J� (k)#
1

- 2?
f� (k)&

2
4?

:
�

r=&�

:
S

s=1

wse&ikxrs f (xrs) (36)

=
2
4?

:
�

r=&� {|
1

&1
dt e&ikxr(t)f (xr(t))& :

S

s=1

wse&ikxrs f (xrs)= , (37)

with xr(t)=(r+1�2) 2+(2�2) t.
For a general function .: R � C, with .(m) # L1(R) for 1�m�P+1,

Eq. (25) can be rewritten [26, p. 70]

|
1

&1
dt .(xr(t))& :

S

s=1

ws.(xrs)=|
1

&1
dt KP(t)

d (P+1)

dt(P+1) .(xr(t)), (38)
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where KP is the Peano kernel defined in Eq. (34). Because the quadrature
rule is exact for polynomials of degree through P, P�0, it is exact for con-
stants, with the consequence that �S

s=1 ws=2. Because |H(u&t)(u&t)P|
<2P, KP # L�([&1, 1]). The same sort of analysis that led from Eq. (25)
to Eq. (28) now yields

} |
1

&1
dt .(xr(t))& :

S

s=1

ws .(xrs)}
�

2 &KP&�

2 \2
2+

P+1

|
(r+1) 2

r2
dx |.(P+1)(x)| (39)

and

2
2

:
�

r=&� } |
1

&1
dt .(xr(t))& :

S

s=1

ws .(xrs) }
�&KP&� \2

2+
P+1

&.(P+1)&1 . (40)

Combining Eqs. (37) and (40) for .(x)=e&ikxf (x) yields

|J� (k)|�
&KP&�

2? \2
2+

P+1

:
P+1

p=0
\P+1

p + |k|P+1& p & f ( p)&1 , (41)

where ( P+1
p ) denotes the binomial coefficient. From Eq. (41) it follows that

/̂n J� # SM and, consequently, that Cn f &Dn f # FM . Moreover, combining
Eqs. (35) and (41) yields

&([Cn&Dn] f ) (m)&�

�
&KP&�

2? \2
2+

P+1

&/̂n&SM+P+1
:

P+1

p=0
\P+1

p + & f ( p)&1 , (42)

from which Eq. (33) immediately follows. K

We present in the following table values of &K0&� , P and &KP&� for
some simple quadrature rules.

Quadrature rule &K0&� P &KP&�

wwwwwwwwwwwwwwwwwwwwwwww
Trapezoid 1 1 0.500000

Simpson's 2�3 3 0.013889

Gauss�Legendre (2 point) 1�- 3 3 0.009592

Gauss�Legendre (3 point) 4�9 5 0.000098
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V. SCHRO� DINGER DYNAMICS

Let K denote the kinetic energy operator defined for f # F2 by Eq. (3).
Then, e&iK{f is defined by [27, Section 3-3]

(e&iK{f )(x)#(F[e&i(k2�2+) {f� ])(x)

=(2?)&1�2 |
R

dk eikxe&i(k2�2+) {f� (k). (43)

Some properties of the operator e&iK{ are collected in Lemma 6.

Lemma 6. Let e&iK{ be defined by Eq. (43). Then the following hold:

(a) e&iK{: Lp(R) � Lq(R), for all { # R and all p, 2�p��, with
q#(1& p&1)&1.

(b) e&iK{: FM � FM , for all { # R.

Furthermore, if [/̂n] is a sequence of unity approximations, then the follow-
ing hold for each n=1, 2, ....

(c) |(e&iKt/n)(x)| and |�(e&iK{/n)(x)��x| are both continuous and
bounded above uniformly in x and t by (2?)&1 &/̂n &S1

.

(d) e&iK{/n # Lq(R), for all q, 2�q��.

Proof. (a) See ([16], Theorem IX.30).

(b) This follows immediately from Eq. (43) because e&i(k2�2+) {f� (k) #
SM for all f� # SM .

(c) This is proved by replacing /̂n(k) by e&i(k2�2+) {/̂n(k) in the proof
of Lemma 3(a).

(d) This follows immediately from Lemma 3(c) and part (a) of this
lemma. K

It follows from Eqs. (20) and (43) that the operators e&iK{Cn are given
by

(e&iK{Cn f )(x)=(2?)&1�2 |
R

dk e ikxe&i(k2�2+) {/̂n(k) f� (k), (44)

for all f # FM and n=1, 2, ... . The following lemma establishes some
properties of these operators.
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Lemma 7. Let the hypotheses of Lemma 4 hold. Then, e&iK{Cn maps FM

into FM , and for each f # FM

(e&iK{Cn f )(x)=|
R

dy (e&iK{/n)(x& y) f ( y), (45)

with /n=(2?)&1�2 F[/̂n].

Proof. The proof is obtained by replacing /̂n(k) by e&i(k2�2+) {/̂n(k) in
the proof of Lemma 4. K

Equation (44) gives the Schro� dinger time evolution of continuous DAFs.
The corresponding equation for the discrete DAFs is

(e&iK{Dn f )(x)=(2?)&1�2 |
R

dk eikxe&i(k2�2+) {/̂n(k)

_{ 2

2- 2?
:
�

r=&�

:
S

s=1

wse&ikxrs f (xrs)= , (46)

where 2 is some positive real number. The following lemma establishes
some useful properties.

Lemma 8. Let the hypotheses of Lemma 5 hold. Then e&iK{Dn f # F0 /
L�(R) and

(e&iK{Dn f )(x)=
2
2

:
�

r=&�

:
S

s=1

ws(e&iK{/n)(x&xrs) f (xrs), (47)

where /n=(2?)&1�2 F[/̂n].

Proof. By inserting the Fourier representation of (e&iK{/n)(x&xrs) into
Eq. (47), one obtains Eq. (46), thus establishing their equivalence. The
interchange of the summation and the integration is justified by the
uniform absolute convergence of the sum in the braces. As noted in the
proof of Lemma 5, the sum in the braces in Eq. (22) is continuous and is
bounded by a first order polynomial in |k|. Therefore, e&i(k2�2+) t/̂n(k) times
the sum in the braces belongs to S0 by (/1). Since (e&iKt Dn f ) is the
Fourier transformation of this function, it belongs by definition to F0 . K

Our final theorem establishes that the Schro� dinger time evolution of
certain functions may be approximated uniformly in x and t by both
continuous and discrete DAFs.
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Theorem 3. (a) Let the assumptions of Theorem 1 hold. Then,

lim
n � �

sup
{ # R

&(e&iK{f ) (m)&(e&iK{Cn f ) (m)&�=0, (48)

uniformly in m, 0�m�M.

(b) Let the assumptions of Theorem 2 hold. Then, for each finite n,

lim
2 � 0

sup
{ # R

&(e&iK{Cn f )(m)&(e&iK{Dn f ) (m)&�=0, (49)

uniformly in m, 0�m�M.

(c) Let the assumptions of Theorems 1 and 2 hold. Then,

lim
n � �

lim
2 � 0

sup
{ # R

&(e&iK{f ) (m)&(e&iK{Dn f )(m)&�=0, (50)

uniformly in m, 0�m�M.

(d) Let the assumptions of Theorems 1 and 2 hold, and let U{ be
defined by Eq. (6) with v(m)(x) # L�(R), 0�m�M. Then

lim
n � �

lim
2 � 0

sup
{ # R

&(U{ f ) (m)&(U{Dn f ) (m)&�=0. (51)

Proof. (a) Replacing f� (k) by e&ik2{�2+f� (k) in the proof of Theorem 1
proves that &(e&iK{f ) (m)&(e&iK{Cn f ) (m)&� is bounded by the expressions
given in Eq. (31). Application of Eq. (32) then completes the proof of
Theorem 3(a).

(b) Replacing /̂n(k) by e&i(k2�2+) t/̂n(k) in the proof of Theorem 2
proves that &(e&iK{Cn f ) (m)&(e&iK{Dn f )(m)&� is bounded by the expres-
sion on the right-hand side of Eq. (33), immediately yielding Theorem 3(b).

(c) Theorem 3(c) is an immediate consequence of Theorem 3(a),
Theorem 3(b), and the triangle inequality

&(e&iK{f ) (m)&(e&iK{Dn f )(m)&�

�&(e&iK{f ) (m)&(e&iK{Cn f ) (m)&�

+&(e&iK{ Cn f ) (m)&(e&iK{Dn f ) (m)&� . (52)

(d) Because (U{.)(x)=e&iv(x) {(e&iK{.)(x) for all functions .,
Eq. (51) is a trivial consequence of Theorem 3(c). K

Theorem 3(a) states, in other words, that the sequence [e&iK{/n]�
n=1 is

a delta sequence for which the expected pointwise limit Eq. (17) is achieved
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uniformly in x, { # R. That this delta sequence property persists in a dis-
crete context is the surprising content of Theorem 3(c), which at the same
time establishes that the uniformity noticed numerically by Hoffman et al.
is not a numerical artifact but has its roots in the analytical properties of
DAFs.

The distributed approximating functionals are tailored to make them
useful for practical calculations.

v The class of functions f for which Theorems 1-3 hold includes the
class S(R) of functions of rapid decrease. In particular it holds for the
Gaussian wave functions often used in quantum mechanical calculations.

v For the /n defined in Eq. (14), the functions e&iK{/n are known
analytically,

(e&iK{/n)(x)=(2?'2({))&1�2 e&x2�(2'2({))

_ :
n

&=0

(&1)&

22&& ! \
_

'({)+
2&

H2&(x�(21�2'({))), (53)

with '({)#(_2+i{�+)1�2. This greatly facilities the calculation of the kernel
functions (U{Dn)(x, y) for the operators U{Dn .

v The matrix with elements (U{Dn)(xrs , xr$s$) is strongly banded and
block Toeplitz, greatly reducing demands on computer memory and allow-
ing the use of very efficient specialized codes for matrix manipulation.

Theorem 3(d), which establishes a delta sequence property for the dis-
crete operators U{ Dn , is only a beginning if those operators are to be used
as a basis for practical solutions of the Schro� dinger equation. Powers of
U{Dn must be analyzed, especially as there is numerical evidence of a
strong relation between the index n and the maximum power that may be
used before accuracy degrades. The effect of truncating the infinite sum in
the definition of Dn needs study. Clearly there is much yet to be done to
provide a solid mathematical foundation for this interesting numerical
method.

ACKNOWLEDGMENTS

The problem treated in this paper was brought to our attention by D. K. Hoffman and
D. J. Kouri. We thank them for several stimulating conversations. We are grateful for the sup-
port of the U.S. National Science Foundation (Grants PHY-9505615 and INT-9222354).
Finally, C. Chandler thanks the Flinders University of South Australia for its hospitality and
the Australian�American Educational Foundation for its support (through its Fulbright
Senior Scholar Program) during a portion of this work.

248 CHANDLER AND GIBSON



REFERENCES

1. D. K. Hoffman, N. Nayar, O. A. Sharafeddin, and D. J. Kouri, Analytic banded
approximation for the discretized free propagator, J. Phys. Chem. 95 (1991), 8299�
8305.

2. D. K. Hoffman and D. J. Kouri, Distributed approximating function theory: A general,
fully quantal approach to wave propagation, J. Phys. Chem. 96 (1992), 1179�1184.

3. D. K. Hoffman, M. Arnold, and D. J. Kouri, Properties of the optimum distributed
approximating function class propagator for discretized and continuous wave packet
propagations, J. Phys. Chem. 96 (1992), 6539�6545.

4. D. J. Kouri, W. Zhu, X. Ma, B. M. Pettitt, and D. K. Hoffman, Monte Carlo evaluation
of real-time Feynman path integrals for quantal many-body dynamics: Distributed
approximating functions and Gaussian sampling, J. Phys. Chem. 96 (1992), 9622�
9630.

5. D. J. Kouri and D. K. Hoffman, Toward a new time-dependent path integral formalism
based on restricted quantum propagators for physically realizable systems, J. Phys. Chem.
96 (1992), 9631�9636.

6. N. Nayar, D. K. Hoffman, X. Ma, and D. J. Kouri, A computational demonstration of
the distributed approximating function approach to real time quantum dynamics, J. Phys.
Chem. 96 (1992), 9637�9643.

7. D. J. Kouri, M. Arnold, and D. K. Hoffman, Time-to-energy transform of wavepackets
using absorbing potentials. Time-independent wavepacket�Schro� dinger and wavepacket�
Lippmann�Schwinger equations, Chem. Phys. Lett. 203 (1993), 166�174.

8. D. K. Hoffman, M. Arnold, and D. J. Kouri, Traveling distributed approximating func-
tion approach to wave packet propagation: Explicit inclusion of a local wave velocity,
J. Phys. Chem. 97 (1993), 1110�1118.

9. Y. Huang, D. J. Kouri, M. Arnold, T. L. Marchioro II, and D. K. Hoffman, Distributed
approximating function approach to time-dependent wave-packet propagation in more
than one dimension: Inelastic collinear atom�diatom collisions, J. Chem. Phys. 99 (1993),
1028�1034.

10. D. K. Hoffman, M. Arnold, W. Zhu, and D. J. Kouri, Interacting distributed approximat-
ing functions for real-time quantum dynamics, J. Chem. Phys. 99 (1993), 1124�1134.

11. T. L. Marchioro II, D. K. Hoffman, W. Zhu, Y. Huang, and D. J. Kouri, Extensions to
the distributed approximating functional: The harmonic propagator, Phys. Rev. E 50
(1994), 2320�2330.

12. Y. Huang, D. J. Kouri, M. Arnold, T. L. Marchioro II, and D. K. Hoffman, Distributed
approximating function approach to time-dependent wavepacket propagation in 3-dimen-
sions: Atom-surface scattering, Comput. Phys. Commun. 80 (1994), 1�16.

13. A. M. Frishman, D. K. Hoffman, R. J. Rakauskas, and D. J. Kouri, Distributed
approximating functional approach to fitting and predicting potential surfaces. 1.
Atom�atom potentials, Chem. Phys. Lett. 252 (1996), 62�70.

14. D. K. Hoffman, T. L. Marchioro II, M. Arnold, Y. Huang, W. Zhu, and D. J. Kouri,
Variational derivation and extensions of distributed approximating functionals, J. Math.
Chem. 20 (1996), 117�140.

15. R. P. Feynman and A. R. Hibbs, ``Quantum Mechanics and Path Integrals,''
McGraw�Hill, New York, 1965.

16. M. Reed and B. Simon, ``Methods of Modern Mathematical Physics, Vol. II,'' Academic
Press, New York, 1975.

17. M. Reed and B. Simon, ``Methods of Modern Mathematical Physics, Vol. I,'' Academic
Press, New York, 1972.

18. D. K. Hoffman and D. J. Kouri, personal communication.

249DISCRETE APPROXIMATING FUNCTIONALS



19. W.-K. Liu, S. Li, and T. Belytscho, Moving least-square reproducing kernel methods. I.
Methodology and convergence, Comput. Methods Appl. Mech. Engrg. 143 (1997),
113�154.

20. S. Li and W. K. Liu, Moving least-square reproducing kernel methods. II. Fourier
analysis, Comput. Methods Appl. Mech. Engrg. 139 (1996), 159�193.

21. M. J. Johnson, On the approximation order of principal shift-invariant subspaces of
Lp(R

d), J. Approx. Theory 91 (1997), 279�319.
22. S. Bochner and S. Chandrasekharan, ``Fourier Transforms,'' Princeton Univ. Press, Prin-

ceton, 1949.
23. L. Ho� rmander, ``Linear Partial Differential Operators,''Academic Press, New York, 1963.
24. J. P. Keener, ``Principles of Applied Mathematics, Transformation and Approximation,''

Addison�Wesley, Redwood City, CA, 1988.
25. I. Stakgold, ``Green's Functions and Boundary Value Problems,'' Wiley, New York, 1979.
26. P. J. Davis, ``Interpolation and Approximation,'' Blaisdell, Waltham, MA, 1963.
27. W. O. Amrein, J. M. Jauch, and K. B. Sinha, ``Scattering Theory in Quantum Mechanics,''

Benjamin, Reading, MA, 1977.

250 CHANDLER AND GIBSON


	I. INTRODUCTION 
	II SEQUENCES OF UNITY APPROXIMATIONS 
	III. CONTINUOUS AND DISCRETE DAFS 
	IV. UNIFORM APPROXIMATION THEOREMS 
	V. SCHRODINGER DYNAMICS 
	ACKNOWLEDGMENTS 
	REFERENCES 

